
Queueable Transaction Finalizers
Check it out on GitHub: https://github.com/AaronCPacheco/DataEncryptionQueueableDemo

WHY TRANSACTION FINALIZERS ARE USEFUL
The new Transaction Finalizers feature makes it possible to reliably execute some additional code after the
asynchronous execution of any class that uses the Queueable interface regardless of whether it succeeds or fails.
This could be useful in a lot of ways, the most immediately obvious being for capturing and reporting errors that are
otherwise difficult or even impossible to programmatically react to. Beyond just logging errors, for example, you could
schedule further processing for records that were successfully processed already or attempt to retry processing for
failed records. You could also use it to send an email to help keep track of the job status. Being able to guarantee the
execution of code even despite throwing an uncatchable exception is useful in a lot of ways.

In this example, we’ll be using it to make sure that processing of records continues even if there is an error as well as
using the debug log to give the developer more useful information to address the root cause of the failure.

SETUP
Since this feature is still in pilot stage it’s only supported in Scratch Orgs. You’ll need to enable Developer Hub in your
production org or sign up for a free Developer Edition org where you can enable it. In your project-scratch-def.json
file, you’ll want to include the “TransactionFinalizers” feature, like so:

Then create a scratch org using that project-scratch-def.json. From the VS Code command pallete run >SFDX: Create
Default Scratch Org and use your scratch def file when prompted, or from a command line run sfdx force:org:create -f
project-scratch-def.json. Now you’re up and running with a Scratch Org with the feature enabled.

Make sure you are using APIv48.0 for your Apex classes when using this feature. On APIv47.0 and below you will get a
“type not visible” error when trying to implement the Finalizer interface.

SCENARIO
I have a Queueable that currently uses a try/catch block and a @future method to attempt to recover gracefully from
unexpected errors that can happen when daisy chaining another queueable process. It also does a callout, which
means it can fail due to an uncatchable timeout exception.

© 2020 Spinnaker Support, LLC

W

E

N

S

TECH PAPER

https://github.com/AaronCPacheco/DataEncryptionQueueableDemo

HOW A FINALIZER IMPROVES THIS DESIGN
Using the Finalizer, we can get rid of the try/catch blocks and the @future method completely and instead handle
that all with the finalizer.

CREATING YOUR FINALIZER
You will want to create a new class for your finalizer. For this demo, we’ll name it DataEncryptionFinalizer.

Now you can update the original Queueable class to get rid of all the try/catch statements and the kludgy logic for
retrying a failed queue and have it all centralized in the finalizer instead.

SPINNAKERSUPPORT.COM

FINAL NOTES
The Finalizer can run after an uncaught error because it runs in its own execution context. This means that
that original queueable class instance that instantiated the finalizer no longer exists, so you should avoid
trying to call back into the queueable class from the finalizer. Although you could in this example call back into
the DataEncryptionQueueable from the DataEncryptionFinalizer.recordProgress() or .setNeedsEnqueued()
methods, since they are called from the DataEncryptionFinalizer itself and therefore exist concurrently within its
execution context, if you attempt to call back in from the DataEncryptionFinalizer.execute() method you will get a
NullPointerException.

CONCLUSION
This feature has a lot of potential, especially if it can be expanded beyond just the Queueable context. Being
able to react to uncatchable Apex errors without having to spend an additional 10% of your net Salesforce cost
to become an Event Monitoring customer alone would make this worth it. It could be useful for doing post-
processing after triggers have finished running or doing surgical database rollbacks when reacting to partial
failures. I’m very much looking forward to seeing this feature be developed more by Salesforce.

https://spinnakersupport.com

